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Abstract
The structure of type A and B trace anomalies is reanalyzed in terms of the
universal behavior of dimension −2 invariant amplitudes. Based on it a gen-
eral argument for trace anomaly matching between the unbroken and broken
phases of a CFT is given. The structure of moduli trace anomalies and their
transformations under source reparametrizations is discussed in detail.

Keywords: QFT, CFT, trace anomalies

Contents

1. Introduction 2
2. Detailed analysis of the ∆= 2 model 5
3. Analysis of the moduli problem 13

3.1. The anomaly structure 13
3.2. The role of source reparametrizations 16

4. Energy-momentum tensor three-point function 21
5. Conclusions 26
Data availability statement 27
Acknowledgment 28
Appendix A. Explicit realizations: unbroken phase 28
Appendix B. Explicit realizations: broken phase 31
References 35

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

1751-8121/23/465402+36$33.00 © 2023 The Author(s). Published by IOP Publishing Ltd Printed in the UK 1

https://doi.org/10.1088/1751-8121/ad0012
https://orcid.org/0000-0002-1133-6656
mailto:theisen@aei.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ad0012&domain=pdf&date_stamp=2023-10-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


J. Phys. A: Math. Theor. 56 (2023) 465402 A Schwimmer and S Theisen

1. Introduction

Trace anomalies [1, 2] have rather special properties compared with the other quantum field
theory (QFT) anomalies. While chiral anomalies can be described generally in a topological
framework, which allows their understanding independent of the group (continuous or dis-
crete) or the order of the symmetry (zero form or higher form), trace anomalies do not have such
a topological description. This difference is related to trace anomalies being ‘real’, i.e. appear-
ing as a real term in the Euclidean generating functional in counterdistinction to the chiral
anomalies which appear as a phase (of course in Minkowski metric all terms being phases the
distinction is not there). As a consequence, while the ’t Hooft matching for chiral anomalies,
i.e. the constancy of the anomaly along the RG flow, follows from the topological invariants
being rigid, such an argument for matching is not available for trace anomalies. Nevertheless it
is believed that trace anomalies are matched between the unbroken and spontaneously broken
phases of a given conformal field theory (CFT) [3]. For this matching one should rely on the
detailed analytic structure of the anomalous correlators.

The diffeomorphism and Weyl symmetry Ward identities obeyed by connected correlators
of primary operators have the same form in the unbroken and broken phases. This follows from
the fact that they are derived from operatorial relations which are the same in the two phases,
evaluated on a Poincaré invariant vacuum, while the transformation of the vacuum under dila-
tions and special conformal transformations is not used. Moreover in both phases the general
analytic structure of the invariant amplitudes is the same. As a consequence the cohomological
structures of the generating functional are the same in the two phases. Therefore the same local
functionals of the sources can appear as anomalies. We mean by ‘matching’ simply that the
normalizations of the anomalies are the same in the two phases of a given theory. Since the
functional dependence on the momentum invariants of the correlators is completely differ-
ent in the two phases, ‘anomaly matching’, if valid, gives non-trivial constraints on e.g. the
structure and normalization of the amplitudes in the broken phase involving the dilaton.

Generically the spectrum of the broken phase is massive. The mass scale is provided by the
non-zero vacuum expectation value of a scalar primary operator of positive dimension which
causes the spontaneous breaking of conformal symmetry to Poincaré symmetry. There could
be a decoupled massless subsector which still preserves conformal invariance. If present it
should be factored out in the anomaly matching. In the rest the only generic massless field
present is the dilaton, the Goldstone boson corresponding to the brokenWeyl symmetry. Since
trace anomalies require the contributions ofmassless fields as intermediate states in correlators,
the anomaly matching fixes certain couplings of the dilaton. These couplings are normalized
by the difference between the anomalies in the unbroken phase and the conformal sector of
the broken phase, if present.

Proving anomaly matching for CFTs is not trivial [3]. The distinction between the two types
of trace anomalies [4] (‘type A’ and ‘type B’) played an important role. Type A anomalies
have an analytic structure very similar to zero form, continuous group chiral anomalies. One
could identify a dimension−2 invariant amplitude which, for special kinematic configurations
where there is only one independent invariant q2, has a a

q2 dependence. The coefficient of
this power gives the normalization of the type A anomaly. The existence of this is again a
consequence of the conformalWard identities which are also valid in the spontaneously broken
phase. In addition one needs again the usual requirements of analyticity which are believed to
be valid also in the broken phase and therefore the 1

q2 behavior is also there. Using the general
property that in the limit where we rescale the momentum to infinity the amplitudes in the
broken phase should match those in the unbroken phase in the same limit, the coefficients of
1
q2 singularities should match since they originate from amplitudes which match. Moreover the
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dilaton contributes exactly to this amplitude and therefore the dilaton couplings are constrained
by the type A anomaly coefficient calculated in the unbroken phase.

For type B anomalies the situation is considerably more involved. We start by review-
ing the procedure for finding the normalization of type B anomalies [1]. Type B anomalies
appear generically in correlators of integer dimensional primary operators with the energy-
momentum tensor. One particular case involves correlators of just energy-momentum tensors
in even dimensions. In the cohomological analysis type B anomalies are characterized by an
anomaly density which is Weyl invariant and the anomaly does not vanish for x-independent
Weyl parameter σ. For the standard example let us consider the Weyl anomaly in d= 4 for a
CFT coupled to a background metric gµν . Then the type B anomaly is

δσW= c
ˆ
d4xσ

√
gC2 (1.1)

where W is the generating functional for connected correlation functions of the energy-
momentum tensor, C2 is the square of the Weyl tensor and c the anomaly coefficient. For
x-independent σ, (1.1) is also the variation of the correlators under dilations and therefore the
anomaly is directly related to the only possible UV counterterm

c̄ logΛ2
ˆ
d4x

√
gC2 (1.2)

corresponding to a logarithmic UV divergence which is possible for integral dimension primar-
ies in a CFT. The correlators are no longer invariant under dilations since after the subtraction
of the counterterm (1.2) the finite correlator contains terms with logarithmic dependence on
the invariants. Therefore in the unbroken phase the anomaly coefficient c can be identified
by looking at the variation under dilations of a logarithmic term in the appropriate correlator,
e.g. the two-point function, whose Λ dependence follows from the second term in the expan-
sion of (1.2) around flat space.ˆ

d4x⟨Tµν (x) Tρσ (0)⟩ei p·x =
4
3
c̄ logp2/Λ2Πµν,ρσ (p)≡ Γ(2)

µν,ρσ (p) (1.3)

whereΠµν,ρσ is the unique tensor structure which is both conserved and traceless and satisfies
the symmetry conditions which follow from Bose symmetry of the two-point function. Its
explicit form is given in (4.15). Calculating the variation under dilations of (1.3) and comparing
with the second variation of (1.1) around flat space gives c= 2 c̄.

In the broken phase, since the broken vacuum is not dilation invariant, the relation between
Weyl transformations and dilations breaks down and the previous argument cannot be used.
The high momentum behavior of the correlator of two energy-momentum tensors is still given
by the same c̄ as in the unbroken phase, but we cannot relate it directly to the normalization of
the possible Weyl anomaly.

In order to match type B anomalies we re-examine the above set-up and we arrive at a dif-
ferent way to extract the anomaly normalizations from universal features of the correlators.
This new way is more general and can be applied uniformly for all trace anomalies and also
gives an alternative and more rigorous way for proving the matching of type A anomalies. The
general procedure will be to analyze the Ward identities following from diffeomorphism and
Weyl invariance after the correlators are decomposed in invariant amplitudes. We will treat
from the beginning the diffeomorphism Ward identities as non-anomalous and in the Weyl
Ward identity we will introduce the anomalous terms with the structure prescribed by the
cohomological analysis with a free normalization. The combined identities relate the anomaly
to relations between dimension −2 amplitudes. Instead of trying to isolate power-like beha-
vior in one invariant when the other invariants are sent to potentially singular points, we link
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the anomaly normalization to the special, universal behavior of certain amplitudes when one
invariant is taken to infinity the others being generic. Then the anomaly matching between the
two phases follows as a consequence of the equality of the respective amplitudes in the deep
Euclidean limit. Equivalently the high invariant behavior is equivalent to the validity of sum
rules normalized to the anomalies. The sum rule is generically the integral over a discontinuity
of an amplitude, one invariant being integrated while the other two are kept at generic values.
In the broken phase another parameter which is kept fixed is the spontaneous breaking scale
v and the sum rule is valid for the whole range from v= 0, the unbroken phase, to v=∞, the
infrared (IR) limit of the broken phase.

The steps in this analysis are:

(a) In the unbroken phase the logarithmically divergent amplitudes give the normalization of
the anomaly through their relation to dilations as outlined above, but by themselves they
are not anomalous. In the above example the logarithmically divergent amplitudes in the
two- and three-point functions obey non-anomalous relations as evidenced by the coun-
terterm (1.2), which is invariant both under diffeomorphisms and Weyl transformations.
Therefore the amplitudes having UV divergences can be eliminated from the anomaly ana-
lysis.

(b) Using the non-anomalous diffeomorphismWard identities in theWeylWard identities, one
obtains identities which involve only dimension−2 amplitudes. These identities relate the
behavior of the amplitudes when a particular kinematical invariant on which it depends
goes to infinity to the anomaly normalizations in both phases.

(c) In addition one obtains non-anomalous Ward identities which relate the dimension −2
amplitudes to cut-off independent expressions which are derived from the two-point func-
tion. In the unbroken phase this determines the high invariant behavior of the respective
amplitudes in terms of the two-point function and when used in (b) relate the anomaly to
the normalization of the two-point function, replacing the usual argument.

(d) The dimension −2 amplitudes have the same deep Euclidean limit in the unbroken and
broken phases. Using this fact for the combinations of amplitudes appearing in (b), one
establishes the equality of the anomalies in the two phases, i.e. ‘anomaly matching’.

(e) Once the existence and normalization of the anomalies in the broken phase are known, the
constraints on the dilaton couplings follow from the known Weyl transformation of the
dilaton.

(f) The anomaly equation obeyed by the dimension −2 amplitudes and their known high
momentum behavior implies sum rules for their discontinuities, normalized by the anom-
aly. In the IR limit of the broken phase the sum rules are dominated by the dilaton contri-
bution and the couplings of the dilaton can be determined.

After these steps we arrive at a characteristicWard identity summarizing the anomaly structure
for both type A and B trace anomalies (and also the perturbative chiral anomalies). For the
three-point function relevant for anomalies in d= 4 one has

s1E1 (s1,s2,s3)+ s2E2 (s2,s3,s1)+ s3E3 (s3,s1,s2) = ct (1.4)

where si ≡ p2i are the kinematical invariants (pi are the three external momenta), Ei are dimen-
sion −2 amplitudes and ct is a constant which characterizes the strength of the anomaly, i.e.
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a or c. The basic Ward identity (1.4) can be translated into two equivalent, universal charac-
terizations of the anomaly:

Ei
si→∞−−−−→ ct

si
+O

(
sj,sk
s2i

[logsi]
p
)

(1.5)

and

− 1
π

ˆ
dsi ImiEi (si,sj,sk) = ct (1.6)

where the imaginary part is obtained from the discontinuity with respect to the si invariant
while the other two invariants sj,sk are kept fixed.

From comparing (1.4) in the deep Euclidean limit in the unbroken and broken phases, one
reaches the conclusion that (1.4) and therefore (1.5) and (1.6) are valid with the same value of
the anomaly ct also in the broken phase. This gives the most general statement about ‘anomaly
matching’. In the broken phase the functional dependence is completely different and the vari-
ous amplitudes depend on the breaking scale v, but the anomaly equations are independent of
v. In particular the relations are valid also for v=∞, the IR regime of the broken phase, where
they impose constraints on the dilaton couplings. In addition for type B anomalies the normal-
ization of the anomaly obtained form the three-point function as outlined above is related to
the two-point correlator in a universal fashion involving again only dimension−2 amplitudes.

In section 2 we study in detail the above scenario for the simplest type B anomaly in d= 4,
which involves scalar primary operators of dimension +2. We will refer to this as the ∆= 2
model. The relatively simple kinematics allows us to follow in detail the steps outlined above.
Whenever the explicit Ward identities realize a step described above we give the general,
abstract form of the equations/arguments which are valid for all anomalies. This section con-
tains therefore our general results with the simplest explicit realization.

In section 3 the special features related to anomalies of higher dimensional primaries are
studied, in particular for conformal moduli in d= 4. We show how the general arguments can
be applied also in these cases by mapping the high dimension amplitudes to combinations of
dimension −2 amplitudes.

In section 4 we study in detail the analytic structure of the type B anomaly in the correlators
of just energy-momentum tensors in d= 4 and apply the general procedure for the matching
of both type A and type B anomalies.

We verify different aspects of the anomaly structure discussed in themain text by a Feynman
diagram calculation in a free model in appendix A. The calculations have general validity
for the ∆= 2 model, since different CFT with dimension +2 primaries have the same ana-
lytic structure for the relevant two and three-point correlators differing possibly just by their
normalizations.

A simple explicit model for the spontaneous breaking of conformal symmetry is discussed
in appendix B. The various general features of the anomaly structure in the broken phase are
verified and the role of the dilaton as an effective description of the anomaly difference for
massive flows is also exemplified.

2. Detailed analysis of the ∆ = 2 model

Consider in d= 4 a CFT which has a dimension two primary scalar operator O. An explicit
realization of such a model is a free massless scalar ϕ for which O = ϕ2. In appendices A
and B we present several explicit checks of our general results for this simple model, but our
arguments will be independent of the actual realization.

5



J. Phys. A: Math. Theor. 56 (2023) 465402 A Schwimmer and S Theisen

We couple the operator to a source J which transforms under a Weyl transformation as

δσJ=−2σ J (2.1)

while the metric transforms as

δσgµν = 2σgµν . (2.2)

The cohomological analysis gives a type B anomaly in the Weyl transformation of the gen-
erating functional of connected correlation functions of the energy-momentum tensor Tµν
and O,

δσW= c
ˆ
d4xσ

√
gJ2 (2.3)

while diffeomorphisms are not anomalous.
Even though the theory is conformal, there are logarithmic UV divergences in momentum

space correlators of integer dimensional operators, which require counterterms. In particular
for correlators of two ∆= 2 operators with any number of energy-momentum tensors the
unique counterterm is

c̄ logΛ2
ˆ
d4x

√
gJ2. (2.4)

The standard argument relates the anomaly coefficient c to the normalization c̄ by consider-
ing an x-independent Weyl transformation which also represents dilations. Then the explicit
breaking of dilations due to the presence of the cut-off Λ in the counterterm leads to a nonvan-
ishing Weyl variation, i.e. to an anomaly (2.3), as discussed in the Introduction. This fixes to
c= 2 c̄, as will be confirmed below.

In the following we will discuss an alternative argument which avoids amplitudes with
UV divergences by using the high momentum behavior of finite dimension−2 invariant amp-
litudes. The invariant amplitudeswhich containUVdivergences can be identified by expanding
the metric dependence in the counterterm (2.4) in perturbations h around flat space η

gµν = ηµν + hµν . (2.5)

In the unbroken phase the two-point function which one obtains by expanding the generating
functional to order J2 is completely determined by the dimension of O and in momentum
space has the expression

Γ(2)
(
p2
)
≡ ⟨O (−p)O (p)⟩=−2 c̄ logp2/Λ2. (2.6)

In the renormalized correlator the cut-off Λ is replaced by a finite scale but we will continue
using the cut-off as a scale. Expanding (2.4) a logarithmically divergent term with the same
normalization will appear also in the correlator of two operatorsO and one energy-momentum
tensor. Expanding

√
g= 1− 1

2ηµνh
µν (using (2.5)) one finds that the divergence will be in a

structure proportional to ηµν .
Wewill now study this correlator by decomposing it into invariant amplitudes inmomentum

space as

Γ(3) (q,k1,k2)≡ ⟨Tµν (−q)O (k1)O (k2)⟩
= Aηµν +Bqµqν +C (qµ rν + qν rµ)+Drµrν

(2.7)

6
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where A,B,C,D depend on the three Lorentz invariants q2,k21,k
2
2, with qµ and k1µ,k2µ the four

momenta carried by the energy-momentum tensor and the two scalar operators, respectively.
In (2.7) we have defined

rµ = k1µ − k2µ (2.8a)

and by momentum conservation one has

qµ = k1µ + k2µ. (2.8b)

We remark that the amplitudes A,B,D are symmetric and the amplitude C is antisymmet-
ric under the interchange of the momenta k1,k2. The amplitude A has dimension 0 while the
amplitudes B,C,D have dimension −2 and are therefore finite, i.e. independent of the cut-off.

We now study the Ward identities which relate Γ(3) to Γ(2). Invariance under infinitesimal
diffeomorphisms xµ → xµ − ξµ(x) under which gµν and J transform as

δξ gµν =∇µξν +∇νξµ

δξ J= ξµ∂µJ
(2.9)

applied to the expansions of the generating functional leads to3

qµΓ(3)
µν (q,k1,k2) = k1ν Γ

(2)
(
k22
)
+ k2νΓ

(2)
(
k21
)
. (2.10)

Weyl invariance, defined as the variations with parameter σ(x) given in equations (2.1)
and (2.2), leads to the relation

ηµυΓ(3)
µν = Γ(2)

(
k21
)
+Γ(2)

(
k22
)
+ 2c. (2.11)

Relations (2.10) and (2.11), when rewritten in terms of the invariant amplitudes, give

A+ q2B+ q · rC=
1
2

[
Γ(2)

(
k21
)
+Γ(2)

(
k22
)]

q2C+ q · rD=
1
2

[
Γ(2)

(
k22
)
−Γ(2)

(
k21
)]

4A+ q2B+ 2q · rC+ r2D= 2
[
Γ(2)

(
k21
)
+Γ(2)

(
k22
)]

+ 2c (2.12)

where we used that the Ward identities which follow from diffeomorphism invariance are not
anomalous and in the identity resulting from Weyl transformations we included the contribu-
tion of the anomaly obtained from the expansion of (2.3).

From (2.12) we could replace A by

Ā≡ A− 1
2

[
Γ(2)

(
k21
)
+Γ(2)

(
k22
)]

(2.13)

and all cut-off dependent terms disappear from the Ward identities. This is a consequence of
the structure of the counterterm (2.4), which confirms that these terms obey theWard identities.
Generically there remains a difference between the two logarithms which does not contain the
cut-off and therefore the possible anomalies are produced by finite amplitudes. More generally
we can simply solve the first equation of (2.12) for A, replace it in the third and obtain

q2C+ q · rD=
1
2

[
Γ(2)

(
k22
)
−Γ(2)

(
k21
)]

(2.14a)

3 More details about the derivation of the Ward identities will be given in section 4.

7



J. Phys. A: Math. Theor. 56 (2023) 465402 A Schwimmer and S Theisen

−3q2B− 2q·rC+ r2D= 2c. (2.14b)

We stress that all amplitudes present in (2.14) have dimension−2 and the contribution from
the two-point function is also finite, keeping the information about its overall normalization.
The appearance of the Ward identities with the structure of (2.14) is generic and we will now
discuss their properties and role for the matching in the general setting.

Equation (2.14b) is a particular instance of the general type of equation (1.4)

s1E1 (s1,s2,s3)+ s2E2 (s2,s3,s1)+ s3E3 (s3,s1,s2) = 2c (2.15)

where s1 = q2, s2 = k21 and s3 = k22 are the three kinematical invariants andEi are the dimension
−2 amplitudes

E1 =−3B−D , E2 = 2(D−C) , E3 = 2(D+C) . (2.16)

The amplitudes with dimension −2 obey unsubtracted dispersion relations in any of the
invariants when the other two invariants are kept fixed at generic values. We choose for each
amplitude the invariant with the same index since this is the dependence constrained by the
anomaly equation (2.15), i.e.

Ei (si,sj,sk) =
1
π

ˆ
dxi

ImiEi (xi,sj,sk)
xi− si

(2.17)

where Imi indicates 1
2i× the discontinuity in the variable si, while the other two invariants are

kept fixed. We remark that (2.17) also contains the information about the analytic structure
in the variables which are kept fixed, after doing appropriate analytic continuations. In a CFT
the support of the integral is between 0 and ∞ for the xi variable. We choose sj,sk to be real
negative in order to have a nonsingular discontinuity.

The large s behavior of a dimension −2 invariant amplitude in a CFT is generically
1
s [log(s)]

p for any of the invariants, where the scale of s in the log is given by the invariants
which are kept fixed. If the amplitude however satisfies (2.17), the behavior is more restricted:
taking a discontinuity in si of (2.15) we obtain

si ImiEi+ sj ImiEj+ sk ImiEk = 0 (2.18)

which implies

ImiEi −−−−→
si→∞

1
s2i

[logsi]
p
+ . . . (2.19a)

Ei −−−−→
si→∞

2c
si

+O
(
sj,sk
s2i

[logsi]
p
)
. (2.19b)

Then si can be taken outside the dispersion relation, and comparing with (2.19) we obtain
the sum rules for each of the invariant amplitudes:

− 1
π

ˆ
dsi ImiEi (si,sj,sk) = 2c. (2.20)

Therefore if an invariant amplitude Ei which appears in an anomaly equation of the form (2.15)
obeys any of the equivalent universal relations (2.19) or (2.20), the parameter c gives directly
the anomaly coefficient. This special structure (2.15) of the Ward identity for dimension −2
amplitudes, relating it to the anomaly, is generic and common also to the type A trace anom-
aly and even to chiral anomalies. Once it is obeyed the high invariant behavior of the amp-
litudes (2.19) or, equivalently, the sum rules (2.20) follow.

8
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What makes type B anomalies special is the relation of the anomaly coefficient c to the
two-point function. For type B anomalies typically there is a diffeomorphism Ward identity
with a cut-off independent contribution of the two-point function which fixes the special high
invariant contribution of the form (2.19) recovering this way the relation between the anomaly
normalization and the two-point function, as we now show explicitly for the ∆= 2 model.

For this model we analyze equation (2.14) at

x≡ k21 − k22 = 0 (2.21)

which is not a singular point. The amplitudes depend on q2 and on

k2 ≡ k21 = k22. (2.22)

Taking a derivative with respect to x at x= 0 of (2.14a) and evaluating (2.14b) at x= 0, we
obtain

q2 C̄+D=
c̄
k2

(2.23a)

q2 (−3B−D)+ 4k2D= 2c (2.23b)

where we used that the amplitude C is odd in x and we defined a dimension −4 amplitude C̄
by

C̄
(
q2,k2

)
≡ ∂C

∂x

(
q2,k2,x= 0

)
. (2.24)

Now we can use the high k2 behavior for D extracted from (2.23a):

D−−−−→
k2→∞

c̄
k2

+O
(
q2

k4
[
logk2

]p)
(2.25a)

and compare it with the relevant equation following from (2.19):

D−−−−→
k2→∞

c
2k2

+O
(
q2

k4
[
logk2

]p)
(2.25b)

leading to the equality c= 2 c̄. This argument, which relates the normalizations of the type
B anomaly and of the two-point function in the unbroken phase is general for all the type
B anomalies: besides the equation (2.14b) there is always an equation generalizing (2.14a)
which relates the high invariant behavior of the amplitude to the normalization of the two-
point function. Comparing the two we get the desired relation between the anomaly and the
two-point function normalizations without using UV divergent amplitudes.

Another special feature of type B anomalies is the appearance of effective IR poles, reflect-
ing the role of the two-point correlator in the Ward identity. We will demonstrate this in the
concrete setting for the ∆= 2 model. We proved in the unbroken phase the relation between
the anomaly normalization and the two-point function using the special kinematic configura-
tions k21 = k22 ≡ k2 and q2. If we assume in addition the validity of dispersion relations in the
‘diagonal variable’ k2, by the argument following (2.15), we obtain the sum rule

− 1
π

ˆ
dk2 Imk2D

(
k2,q2

)
=
c
2
. (2.26)

If this sum rule is valid also for q2 = 0 then, since there is no scale left for Imk2D, we conclude

Imk2D
(
k2,0

)
=−π c

2
δ
(
k2
)

and D
(
k2,0

)
=

c
2k2

. (2.27)
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Figure 1. The regularized δ-function in Imk2D(k
2,0).

This functional dependence shows the presence of an effective zero-mass pole. Themechanism
for its appearance is simple: for q2 = 0, from equation (2.14a) we obtain

Imk2D
(
k2,0

)
= lim

k21→k22

Imk22
Γ(2)

(
k22
)
− Imk21

Γ(2)
(
k21
)

2
(
k21 − k22

) . (2.28)

Since4 Imk2 logk2 =−πθ(k2), the result is as in figure 1, which is a regularized δ-function and
therefore, using also (2.6) the limit is

Imk2D
(
k2,0

)
→−c̄πδ

(
k2
)

(2.29)

and comparing with (2.27) gives again c= 2 c̄. We remark that the appearance of the δ-function
is the result of a ‘collision’ between the branch points in k21 and k

2
2. This effective pole is specific

to type B anomalies and is different from the generic presence of poles following from the
anomaly sum rules which represent the collapse of ordinary branch cuts in certain limits. In
particular it is not matched in the broken phase where the analytic structure of the two-point
correlator is completely different.

Once the high invariant behavior and sum rules for dimension −2 amplitudes (2.19)
and (2.20) are valid for type B, we could discuss in general the matching for all trace anom-
alies. We start our discussion of the anomaly matching with a summary of the structure of the
spontaneously broken phase. Let us assume that there is another Poincaré invariant vacuum on
which a nonzero dimensional scalar primary operator gets a vacuum expectation value. In such
a situation the conformal symmetry is spontaneously broken and a mass scale v, introduced
through the vacuum expectation value, the order parameter of the broken phase, is introduce
in the theory. There are several general characteristics of the broken phase which we will use:

(a) Following from Goldstone’s theorem a zero mass scalar, the dilaton exists. The dilaton D
has a linear coupling to the energy-momentum tensor with a dimensional strength f related
to v

⟨0|Tµν |Σ(q)⟩= fqµqν . (2.30)

4 We use the definition of the logarithm as a real analytic function on the first Riemann sheet with the branch cut on
the positive real axis.
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Formally one hasWeyl invariance also in the presence of the coupling (2.30) if we attribute
to the dilaton the Weyl transformation

Σ→ Σ+σ (2.31)

where we used the normalized dimensionless dilaton field Σ≡D/f. In the broken phase
Weyl invariance is limited to transformations where σ(x) falls off to zero at large x. As a
consequence e.g. the relation between dilations and Weyl invariance with x-independent σ
is not anymore valid.

(b) Since the operatorial relations of the CFT are not changed and the derivation of the dif-
feomorphism and Weyl Ward identities used only the Poincaré invariance of the vacuum,
all the Ward identities we used in the unbroken phase remain valid. Also the analyticity
properties of the invariant amplitudes remain valid. Anomalies can appear only as real
parts in Ward identities corresponding to the same type of anomaly functionals as in the
unbroken phase. Therefore the basic Ward identity for the dimension−2 amplitudes EBi in
the broken phase, characterized by the mass scale v, is valid but with an a priori different
normalization of the anomaly cB:

s1E
B
1

(
s1,s2,s3,v

2
)
+ s2E

B
2

(
s1,s2,s3,v

2
)
+ s3E

B
3

(
s1,s2,s3,v

2
)
= 2cB. (2.32)

The anomalies match if cB = c. From its high momentum analysis we conclude, as in the
unbroken phase,

EBi −−−−→si→∞

2cB

si
+O

(
sj,sk,v2

s2i
[logsi]

p
)

(2.33)

and

− 1
π

ˆ
dsi ImiE

B
i (si,sj,sk,v) = 2cB (2.34)

where we made explicit the possible dependence of the discontinuities on the breaking
scale v.

(c) For a given correlator the deep Euclidean limit of the amplitude in the broken phase coin-
cides with the limit in the unbroken phase. Denoting invariant amplitudes in the two phases
as AB and A, respectively we have

lim
λ→∞

A
(
λq21,λq

2
2, . . .

)
AB

(
λq21,λq

2
2, . . .

) = 1 (2.35)

the deviations being of order 1/λ or v2/q2i when the invariants are taken to ∞. This is
simply a consequence of the fact that the operator product expansion (OPE) of the operat-
ors are not changed in the broken phase and therefore the UV structure of the correlators
remains the same even though for finite values of the invariants the structure of the amp-
litudes changes in the broken phase, the spectrum of the theory being generically massive,
etc.

Anomaly matching is now an immediate consequence. Consider the combination of dimension
−2 invariant amplitudes which appear in the ‘anomaly equations’ (2.15) and (2.32), respect-
ively, for a configuration in the deep Euclidean limit for generic (i.e. avoiding special points
like sj = 0) configurations. We have

lim
λ→∞

λs1E1 (λs1,λs2,λs3)+λs2E2 (λs1,λs2,λs3)+λs3E3 (λs1,λs2,λs3)
λs1EB1 (λs1,λs2,λs3)+λs2EB2 (λs1,λs2,λs3)+λs3EB3 (λs1,λs2,λs3)

=
c
cB

= 1 (2.36)

where we used that c,cB do not depend on the invariants or on the breaking scale v.

11
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Once the equality of the anomalies is established, it follows that asymptotic values of Ei
for taking si to ∞ and the sum rules (2.20) and (2.34) also match. The sum rules (2.34), now
normalized to, c are valid for the whole range of v including v= 0, the unbroken phase.

We can relate the sum rules in special limits to particular contributions in the two phases.
Consider the sum rule for the discontinuity in q2 of the amplitude−3B−D, which we denoted
by E1 in the unbroken phase:

− 1
π

ˆ
dq2 Imq2E1

(
q2,k21,k

2
2

)
= 2c (2.37)

At k21 = 0 or k22 = 0 the amplitude is singular since one has a branch point. One can, however,
approach the configuration k21 = k22 ≡ k2 = 0 as a limit in k2 approaching 0. Since (2.37) holds
also in the limit and the integrand has dimension −2 this implies

Imq2E1
(
q2,0,0

)
=−2cπδ

(
q2
)
. (2.38)

This pole-like discontinuity, which is reached in a very special way due to the singularity of the
limit, gives a universal characterization of the anomaly. As shown above the characterizations
through the high invariant limit of the amplitude (2.19) or equivalently the sum rules (2.20)
are much more general and mathematically unambiguous.

In the broken phase generically the sum rule is saturated with massive states. If however we
go to the deep IR limit, i.e. v→∞ when all the masses are sent to ∞ then also in the broken
phase the saturation will be due only to massless states and (2.38) must be valid. Generically in
the broken phase there is a sector which preserves conformal invariance which therefore could
contribute to c. Outside this sector the only generic massless state is the dilaton whose coupling
in the q2-channel can produce the δ(q2) dependence normalized to the coupling of the dilaton
to the rest of the diagram. Therefore the anomaly matching will constrain the dilaton couplings
requiring their proportionality to the difference between the anomaly in the unbroken phase
and the anomaly of the conformal sector in the broken phase.

In the deep IR limit of the broken phase the dilaton reproduces completely the anomaly. We
recall the implementation of this general relation. Assume that in the presence of the external
sources, the metric gµν and the sources J coupled to the additional primaries, one has an
anomaly:

δσW(gµν ,J) =
ˆ
d4xσA(gµν ,J) (2.39)

where W is the generating functional and A is the local anomaly functional containing the
normalizationmentioned above. Then the dilaton effective action S(gµν ,J,Σ), whose variation
reproduces the anomaly (2.39), is

S(gµν ,J,Σ) =−
ˆ 1

0
dt
ˆ
d4xΣA

(
g−tΣ
µν ,J−tΣ

)
+Ψ

(
g−Σ
µν ,J−Σ

)
(2.40)

where g−tΣ
µν ,J−tΣ are the sources transformed by a Weyl parameter σ =−tΣ and Ψ an arbit-

rary diffeomorphism invariant functional, contributing a Weyl invariant term. For the ∆= 2
model the dilaton effective action is

S(gµν ,J,Σ) =−c
ˆ
d4x

√
gΣJ2 +Ψ(gµν exp(−2Σ),Jexp(2Σ)) . (2.41)

The second term is invariant under diffeomorphism and Weyl transformations. The first term
represents the ‘dilaton coupling’ to the two operators OO. In principle using its analytic and
covariance properties it can be separated from the general off-shell ⟨ΣOO⟩ correlator. In the
IR limit of the broken phase when the effective action is expanded in powers of all the momenta
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it is singled out by being the only ‘ultralocal’ term which contains J2 and survives when all
momenta are zero. More generally, in the deep IR the dilaton effective action is given by a
polynomial expansion in momenta and the dilaton coupling will always be defined such that
it corresponds to the lowest independent terms in the momentum expansion around zero.

3. Analysis of the moduli problem

Consider, again in d= 4, a dimension four scalar primary which has the special property that
it does not have a β-function, i.e. in particular its structure constant vanishes. Such a primary,
called ‘modulus’ in the following, will have nevertheless a Type B anomaly induced by its
two-point function5. In the first part of this section we will study the anomaly structure of
a CFT with one modulus. This will be generalized in the second part to the case of several
moduli.

3.1. The anomaly structure

The high dimension of the modulus compared with the ∆= 2 model of the previous section,
produces new features which we will analyze. Coupling the operator to a source J, which is
Weyl invariant, the anomaly is

δσW= c
ˆ
d4xσ

√
gJ∆4J (3.1)

where ∆4 is the Fradkin–Tseytlin–Paneitz–Riegert (FTPR) operator [9–11] with the special
property that it transforms homogeneously under Weyl transformations with weight −4, i.e.
∆4 → e−4σ∆4. Its explicit form will be given in (3.17).

The anomaly reflects the logarithmic divergence in correlators of two moduli with any
number of energy-momentum tensors. The corresponding diffeomorphism andWeyl invariant
counterterm is

c̄ logΛ2
ˆ
d4x

√
gJ∆4J. (3.2)

The two-point function is

⟨O(p)O(−p)⟩ ≡ Γ(2(p) =−2 c̄(p2)2 logp2/Λ2. (3.3)

As for the previous case, we want to understand the cut-off independent characterization of
the anomaly as it appears in the correlator of two moduli and one energy-momentum tensor.
Since the modulus operator O is a Lorentz scalar, the decomposition in invariant amplitudes
is formally identical to the one in the previous section, (2.7), but now the invariant amplitudes
have positive dimensions: +4 for the A amplitude and +2 for the B,C,D amplitudes. The
derivation of the Ward identities is similar; the diffeo identities are identical to the first two
equations of (2.12), while the Weyl equation, the third equation in (2.12), does not have a right
hand side besides the anomaly since the source J is invariant under a Weyl transformation.

The amplitudes have UV divergences. Since we want to preserve conformal invariance, the
normalization conditions corresponding to power divergences are put to zero. Therefore the
A and B,C,D amplitudes obey triply, respectively doubly subtracted dispersion relations. In
order to deal with finite amplitudes we use the fact that the logarithmically divergent contribu-
tions obey the Ward identities, since the counterterm is invariant under both diffeomorphisms

5 Various aspects of this type of anomalies were studied in [5–8].
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and Weyl transformations. We can then shift the amplitudes by terms containing logarithms
and these shifts will remove the two-point contributions which contain the cut-off since the
counterterm fixes completely the form of the logarithmic divergence. We list the shifts which
follow from the structure of the counterterm (3.2):

A→ A+
c̄
6

(
q4 − q2

(
k21 + k22

)
− 6k21 k

2
2

)(
logk21/Λ

2 + logk22/Λ
2
)

B→ B− c̄
6

(
q2 − k21 − k22

)(
logk21/Λ

2 + logk22/Λ
2
)

C→ C− c̄
2

(
k21 − k22

)(
logk21/Λ

2 + logk22/Λ
2
)

D→ D+
c̄
2

(
q2 + k21 + k22

)(
logk21/Λ

2 + logk22/Λ
2
)
.

(3.4)

After these shifts the Ward identities for the finite shifted amplitudes have the form

A+ q2B+ q · rC=
c̄
2

(
k41 − k42

)(
logk22 − logk21

)
(3.5a)

q2C+ q · rD=
c̄
2

(
k41 + k42

)(
logk21 − logk22

)
(3.5b)

4A+ q2B+ 2q · rC+ r2D= c
((
k21
)2

+
(
k22
)2)

(3.5c)

where we assumed that the Weyl Ward identity can be anomalous and we used the form of the
anomaly (3.1) expanded around the flat metric ηµν .

Using (3.5a) we re-express (3.5c) in terms of the dimension 2 amplitudes

− q2 (3B+D)− 2q · r C+ 2
(
k21 + k22

)
D+ 2 c̄

(
k41 − k42

)(
logk21 − logk22

)
=
c
4

((
k21
)2

+
(
k22
)2)

. (3.6)

We can absorb the additional k dependent term in the l.h.s. in a redefinition of C:

C≡ C̄− c̄
(
k21 + k22

)(
logk21 − logk22

)
. (3.7)

Now (3.7) has the form

s1E1 (s1,s2,s3)+ s2E2 (s1,s2,s3)+ s3E3 (s1,s2,s3) = Q(s1,s2,s3) (3.8)

which generalizes (2.15). We pause again to discuss in general the properties of this positive
dimensional anomaly structure. In (3.7) the amplitudes Ei have dimension N, while Q, which
contains the normalization of the anomaly, is a homogenous polynomial in s1,s2,s3 of dimen-
sion N+ 2. To keep the discussion general, we take N to be a positive even integer or 0. The
amplitudes Ei have the special feature that they do not contain the cut-off scale, i.e. they are
UV convergent in spite of their non-negative dimension. This means that they have conver-
gent dispersion relations in any of the s variables. This is possible only if the amplitude as an
analytic function has all its singularities in a dimension−2 function and the overall dimension
is made up by integer powers of the s variables. Therefore the amplitudes Ei have the special
form

Ei (s1,s2,s3) = ΣkPk (s1,s2,s3) Ẽ
(k)
i (s1,s2,s3) (3.9)

where Pk are monomials formed from the s-variables of total dimension N+ 2 and E(k)
i are

dimension−2 analytic functions. The summation is over all monomials which are compatible
with the total dimension N. The dispersion relations for Ei will be convergent: the discontinu-
ity is coming from Ẽ(k)

i multiplied by the monomial and in the dispersion relation itself the
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monomial is simply taken outside the integral if it does not involve the integration variable si;
if si is part of the monomial it provides ‘free’ subtractions at si = 0, getting also outside the
integral.

Using (3.9) we can repeat our discussion following (2.15) to determine the special features
of the dimension −2 amplitudes Ẽ(k)

i (s1,s2,s3) related to the presence of the anomaly poly-
nomial Q in the r.h.s. Taking an asymptotic expansion in each of the variables si and equating
the corresponding terms on the two sides of the equation one obtains the equivalent relations

Ẽ(k)
i −−−−→

si→∞

fki (c)
si

+O
(
sj,sk
s2i

[logsi]
p
)

(3.10)

and

− 1
π

ˆ
dxi Imi Ẽ

(k)
i (xi,sj,sk) = fki (c) (3.11)

where fki (c) are pure numbers depending on the anomaly polynomial Q. In particular some
of these coefficients could be zero if the appropriate term does not appear in Q. The leading
terms in the asymptotic expansion give relations as specified by (3.11) while non-leading ones
have generically sums of terms. Saturating (3.11) with δ-function type discontinuities at spe-
cial configurations when only one invariant is left is generically problematic also in this case.
For type B anomalies at least one of the expressions appearing in (3.10) is given by a diffeo-
morphism Ward identity involving the two-point function and then comparing it with (3.10)
we get the desired relation between the anomaly in the unbroken phase and the normalization
of the two-point function.

We return now to the moduli anomaly. To simplify again the argument we choose the
nonsingular kinematical configuration k21 = k22 ≡ k2. For the D amplitude the relevant expan-
sion is

D
(
q2,k2

)
=
(
k2
)2
D̃
(
q2,k2

)
+ . . . . (3.12)

and then clearly the behavior of D̃ is similar to the behavior of D for the ∆= 2 model of the
previous section. From the asymptotic expansion of (3.5b) in k2 we obtain

D̃→ c̄
k2

(3.13)

and using the expansion in (3.6) we find c= 2 c̄ from thematchingwith the (k2)2 in the anomaly
polynomial.

Clearly after the expansion of the positive dimension amplitudes in terms of dimension−2
amplitudes the moduli problem (and a similar one for the anomalies of dimension 3 scalar
operators) are mapped to the ∆= 2 case. The anomaly matching follows from an argument
similar to the one used in section 2 for the∆= 2model: one considers again the ratio of (3.9) in
the unbroken and broken phases in the deep Euclidean limit. Equating the ratio of the anomaly
polynomials in the same limit the equality of the normalizations follows. In particular for a
single modulus the dilaton effective action is:

S(gµν ,J,Σ) =−c
ˆ
d4xΣ

√
gJ∆4J+Ψ(gµν exp−2Σ,J) (3.14)

where Ψ is an arbitrary diffeomorphism invariant functional. The dilaton coupling is defined
by the normalization of the unique local term with four derivatives in the expansion of the
effective action.
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We comment that a similar analysis can be performed for the type B anomaly generated by
a dimension +3 scalar primary coupled to a dimension −1 source J where

δσW= c
ˆ
d4xσ

√
gJ∆2J ∆2 =□− 1

6R. (3.15)

3.2. The role of source reparametrizations

We consider now moduli in d= 4, i.e. dimension 4 scalar primaries Oi, i = 1, . . . ,N, which
have the special property that the structure constants of any three moduli (including the same
modulus) vanish. This prevents the appearance of higher than linear terms of logΛ2 in the
three-point correlator and therefore a vanishing of the β function in lowest order. We assume
that the higher order constraints leading to the exact vanishing of the β function are also ful-
filled. Then the moduli can be added to the action with finite coefficients and conformality is
preserved. We diagonalize the two-point correlators of the moduli which is always possible
in a unitary CFT and we normalize the operators such that after diagonalization the two-point
function is proportional to the unit matrix.

We couple the moduli to sources Ji via6

ˆ
d4x

√
γ

N∑
i=1

JiOi. (3.16)

The sources are inert under Weyl transformations and as a consequence one can redefine them
through local functions without interfering with their Weyl transformation properties. We will
discuss the meaning and role of these transformations for type B anomalies. Since differ-
ent type B anomalies can mix under the transformations we need a complete list of these
anomalies.

In order to simplify the analysis, we will use the one-to-one relation between type B anom-
alies and logarithmic countertermswhich is valid in the unbroken phase andwewill classify the
logarithmic counterterms. Since counterterms preserve the diffeomorphism andWeyl symmet-
ries, they are constructed from local scalar integrands which transform homogeneously with
weight −4 under Weyl transformations. We list these local expressions for a single source J
when J is acted upon by derivative operators.

I1 (J)≡∆4J≡
(
□2 +

1
3
(∇µR)∇µ + 2Rµν∇µ∇ν −

2
3
R□

)
J (3.17)

where ∆4 is the FTPR operator [9–11].

I2 (J)≡□J□J+ 2∇µ∇νJ∇µ∇νJ+ 4∇µJ∇µ□J+ 4

(
Rµν − 1

6
gµνR

)
∇µJ∇νJ (3.18)

I3 (J)≡□J∇µJ∇µJ+ 2∇µ∇νJ∇µJ∇νJ (3.19)

I4 (J)≡∇µJ∇µJ∇νJ∇νJ. (3.20)

The counterterms contain the integrated expressions

Ck ≡
ˆ
d4x

√
γ Ik (J) . (3.21)

6 In this section we use γ for the space-time metric and reserve g for the Zamolodchikov metric.
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Since I1, I3 are total derivatives the corresponding C1,C3 vanish. Of course we expect these
vanishings since in the unbroken phase there is no expectation value for O and the correlator
of three O also vanishes. Therefore we will get just the counterterms C2,C4. We can get form
the densities I1, I3 non-vanishing counterterms if we multiply them with additional powers of
J. These counterterms are, however, not independent. For exampleˆ

d4x
√
γ JI1 (J) =−C2 (3.22)

and ˆ
d4x

√
γ JI3 (J) =−C4. (3.23)

The counterterms produce type B anomalies by using the same integrands in the variation of
the effective action7

δσW= ck

ˆ
d4xσ (x)

√
γ Ik (J) k= 2,4 (3.24)

where ck gives the normalization of the anomaly.
The equivalence of counterterms of the type discussed above, which was based on integ-

ration by parts, can produce additional terms when derivatives act on σ. These expressions,
being Weyl invariant and vanishing for x-independent σ, represent therefore, if cohomologic-
ally nontrivial, possible type A anomalies. It is an interesting question if type A anomalies for
moduli can be realized physically, but we limit our discussion just to type B and therefore we
ignore the possible type A anomalies which may appear in the equivalence relations.

When we have more than one source, any combination of sources in the expressions above
would produce a priori independent anomalies. The counterterms/anomalies (3.18) and (3.20)
represent just the simplest terms in infinite families of moduli anomalies. Consider, as an
example starting from (3.18), the family of anomalies

c{k}ij

ˆ
d4xσ

√
γ Jk1 . . .Jkn

(
□Ji□Jj+ 2∇µ∇νJi∇µ∇νJ

j

+4∇µJi∇µ□Jj+ 4
(
Rµν − 1

6g
µνR

)
∇µJ

i∇νJ
j
) (3.25)

with a priori independent universal, i.e. scheme independent normalizations c{k}ij. Obviously
these expressions are still Weyl invariant and they represent new possible anomalies.

They correspond to single logarithmic divergences in the correlators of k+ 2 moduli with
theory dependent normalizations. In expressions (3.25) summation over all (k+ 2)! permuta-
tions of the k+ 2 indices of c{k}ij are understood, irrespective of whether they are all different
or not. This ensures Bose symmetry of the moduli correlators which are derived from them.
This also applies to all the following expressions.

The reduction of counterterms built from the I1, I3 structures to the counterterms of type
C2,C4 is valid in the general situation when we have an arbitrary number of sources and the
structures can be multiplied by arbitrary products of sources. This is a consequence of the
complete symmetrization on the sources which is valid for all our expressions. Indeed let us
consider a typical identity for a single source used in the integration by parts when proving the
equivalence of the counterterms:

□Jp = pJp−1□J+ p(p− 1)Jp−2∇µJ∇µJ. (3.26)

7 This relation to type B anomalies which, by definition, have a Weyl invariant anomaly density, is the reason why
above we listed only Weyl invariant densities.
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The same relation is valid if we have complete symmetrization of p sources, i.e.

□
(
Ji1 . . .Jip

)
S
= p

(
□Ji1 . . .Jip

)
S
+ p(p− 1)

(
∇µJi1∇µJi2 . . .Jip

)
S

(3.27)

where we put an index S to remind us that the expressions are completely symmetrized. It
follows that we can repeat the integration by parts manipulations for many sources by simply
doing the calculation for a single source and in the final result replace the appropriate expres-
sions for many sources, completely symmetrized. We obtain that generically an expression
based on I1 gives us linear combinations of expressions based on I2 and I4 while an expres-
sion based on I3 gives just expressions of the I4 type.

A convenient way to treat all the independent anomalies corresponding to I2 and I4 is to sum
over the sources and then the two families of anomalies will be characterized by two families
of functions hij(J) and tijkl(J), respectively:ˆ
d4xσ

√
γ hij (J)

(
□Ji□Jj+ 2∇µ∇νJi∇µ∇νJ

j+ 4∇µJi∇µ□Jj

+4
(
Rµν − 1

6g
µνR

)
∇µJ

i∇νJ
j
)

(3.28)ˆ
d4xσ

√
γ tijkl (J)∇µJi∇µJ

j∇νJk∇νJ
l. (3.29)

The coefficients c{k}ij are recovered from hij(J) and tijkl(J) by a Taylor expansion around Ji = 0
for i = 1, . . . ,N.

These two sets of functions contain all the information about the Type B anomalies of
moduli in d= 4. All the expressions are completely symmetrized in the sources. A partial
constraint following from this is that hij and tijkl are symmetric under interchange of i with j
and of k with l.

Consider now possible reparametrizations of the sources

Jk = f k (J ′) (3.30)

where fk are Taylor expandable around J ′i = 0, invertible as a power series and start with a
normalized linear term, i.e.

f k (J ′) = J ′k+O
(
(J ′)

2
)
. (3.31)

Obviously the sources J ′i are also inert under Weyl transformations. The change of variables
induces reparametrizations in the generating functional, which now will depend on J′, and
therefore a reparametrization of the coefficients of the terms which contain single logarithms
which are at the origin of the anomalies. To follow the same convention after the change of
variables we do a complete summation over permutations of the J′ variables. Since the possible
anomalies with J ′i as sources are characterized by the same basis of space-time integrands, now
written in terms of J ′i, the new coefficient functions can be read off the explicit form of the
anomaly. As the simplest example we consider the anomaly (3.29) which was first discussed
in [12].

Doing the reparametrization of the anomaly the transformation of the coefficient function is

t ′ijkl (J
′) = tmnpr (J(J

′))
∂Jm

∂J ′i
∂Jn

∂J ′j
∂Jp

∂J ′k
∂Jr

∂J ′l
. (3.32)

A similar procedure will give the transformation rules for h ′
ij(J

′), which will involve a linear
combination of hij(J) and tijkl(J). Clearly the functional dependence of the anomaly functions
is not fully physical since changing the sources through reparametrization does not change
the physical meaning while changing the functional form. We stress that there is no a priori
constraint on the transformation properties of the anomaly functions: they follow from the
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explicit form of the anomalies we choose as a basis by simply doing the change of variables
on the anomaly formulae.

We need to understand the relation between the reparametrizations and the correlators of
the moduli. The original sources Ji were coupled to the moduli operatorsOj through the coup-
ling (3.16). The correlators of the moduli were defined by the Taylor expansion of the gener-
ating functional, i.e. the coefficient of Jk1(x1) . . .Jkn(xn) in its expansion gives the correlator

⟨Ok1 (x1)Ok2 (x2) · · ·Okn (xn)⟩. (3.33)

After the change of variables, expanding now in powers of J′, their coefficients will be given
by linear combinations of the general form

⟨Ok1 (x1)Ok2 (x2) · · ·Okn (xn)⟩+
∑
i̸=j

arijδ (xi− xj)⟨Ok1 (x1) · · ·Okr (xj) · · ·Okn (xn)⟩

+
∑

i̸=j̸=k ̸=i

brijkδ (xi− xj) δ (xi− xk)⟨Ok1 (x1) · · ·Okr (xk) · · ·Okn (xn)⟩+ . . . .
(3.34)

The second term of the first line is a sum over (n−1)-point functions where the two oper-
ators Oki(xi) and Okj(xj) have been replaced by δ(xi− xj)arijOkr(xj), the third line is a sum of
(n−2)-point functions where three operators have been replaced by one, etc. The coefficients
arij, b

r
ijk etc are determined by the (derivatives of the) functions fr in the change of basis (3.30).

Therefore, compared with the original correlators, the new ones have ‘semilocal’ contributions
when expressed in terms of the old correlators, i.e. contributions of lower order correlators
multiplied by δ-functions. The only correlators which are not changed by the reparametriz-
ation invariance are the two-point functions since the one-point functions, which could have
given a semilocal contribution, are zero in the unbroken phase. So depending on the sources,
semilocal contributions could be present. We do not, however, have an intrinsic definition for
such contributions and we can identify only their relative appearance between two sets of
correlators which correspond to two choices of sources, which are related by a reparametriz-
ation. We therefore conclude that all choices of sources which are related by reparametriz-
ations are equivalent and contain the same universal information. Therefore, all dependence
on the sources, including the functional form of the anomaly functions, should be taken mod-
ulo reparametrizations in order to obtain the regularization independent universal information
about the respective CFT.

Once this is understood we could obtain additional information about the anomaly func-
tions. Let us consider, as an example, the three J contributions in the anomalies. Since there is
no intrinsic anomaly starting with three J, terms of this type can appear only in the hij anomaly.
In light of the previous discussion this means that this must be true modulo reparametrizations,
i.e. there should exist a choice of sources for which the three J terms vanish. But in an arbitrary
parametrization one could have a three J term, reflecting a semilocal three-point function:

δ (x− y)⟨O (y)O (z)⟩. (3.35)

It follows that three J contributions in the hij anomaly are possible since by choosing the
quadratic terms in the f k(J) functions we could put them to zero.

We do not have similar constraints for (3.29). Even though the structure constants vanish for
three moduli, one can still have an unremovable logarithm in correlators with four and more
moduli: in a block decomposition one has couplings between two moduli and other primaries
which are not moduli and a logarithm may be produced.

Finally we want to use the previous discussion to produce a basis for the two remaining
independent anomalies which have simple transformation rules for the anomaly functions char-
acterizing them. We stress that this is not a logical necessity which imposes constraints on the
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theory but just a convenient choice. The functions tijkl for the (3.29) anomaly already have
simple transformation rules (3.32), so we will concentrate on (3.28).

The new form should still be a functional only of hij which contains all the universal inform-
ation. Therefore the new terms we add could depend only on hij. They should beWeyl invariant
in order that the new form continues to be a type B anomaly. We have the option to add a term
based on the kinematical structure I3(J) which we know to be reducible to I4(J). We use this
option normalizing the contribution to a ‘connection’ derived from hij. In addition we can add
a term with the form of (3.29) but again with a normalization dependent on hij. Therefore at
the end these two modifications amount to a redefinition of tijkl by an additive hij dependent
term. We arrive therefore at the new form of (3.28)

Â=

ˆ
√
γ σgij

{
□̂Ji □̂Jj+ 2∇̂µ∇̂νJi ∇̂µ∇̂νJ

j+ 4∇µJi ∇̂µ□̂Jj

+4

(
Rµν − 1

6
gµνR

)
∇µJ

i∇νJ
j

}
(3.36)

where

∇̂µ∇̂νJ
i =∇µ∇νJ

i+Γikl ∂µJ
k ∂νJ

l

∇̂µ□̂Ji =∇µ□̂ji+Γikl∇µJ
k □̂Jl

(3.37)

and

Γijk =
1
2
gim (∂kgmj+ ∂lgjm− ∂mgij) (3.38)

and we replaced hij with gij to stress that they have different transformation properties under
reparametrizations. Indeed if we work out the reparametrization of (3.36) we obtain that gij
transforms as a symmetric tensor. We remark again that (3.28) and (3.36) are completely
equivalent as far as the universal information they carry is concerned and are equally cor-
rect forms for the type B anomaly. Due to the simple transformation properties of gij it is easy
to check the vanishing requirement for the three J contribution in a given ‘frame’: simply one
can choose Riemann normal coordinates where gij(0) = δij and Γijk(0) = 0, and then from the
form of (3.36) it is evident.

The expression (3.36) is clearly Weyl invariant, being a linear combination of the previous
anomalies with special choices of the anomaly functions.

We now discuss the meaning and transformation properties of the ‘Zamolodchikov metric’
related to the above general discussion. The Zamolodchikov metric is defined [13] by first
deforming the original CFT through the addition of a term∑

k

J̄k
ˆ
d4x

√
γOk (3.39)

where J̄k are finite deformation parameters. Then the two-point functions of the moduli ⟨OjOl⟩
are studied in the deformed theory and their normalization, defined by a matrix ḡjl(J̄), gives the
‘Zamolodchikov metric’. Since the analytic structure of the two-point function is completely
fixed by conformal invariance, the normalization is also the normalization of the logarithmic
dependence and therefore the metric is closely related to the type B anomaly. We want to study
the details of this relation, in particular the covariance of the metric under a reparametrization
of the deformation parameters J̄k.
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Though the generating functional’s dependence on the sources is defined as an expansion
in Jk around Jk = 0, it is believed to have a finite radius of convergence and therefore can be
expanded also around J̄k, giving the correlators of the deformed theory.

To discuss this concretely, let us choose the ‘covariant scheme’ (3.36) and expand Jk(x) as:

Jk (x) = J̄k+ J̃k (x) . (3.40)

Then Taylor expanding in J̃ and keeping only quadratic terms, we obtain for the anomaly

A=

ˆ
d4xσ

√
γ gij (J̄)

[
□J̃j□J̃l+ 2∇µ∇ν J̃j∇µ∇ν J̃

l+ 4∇µJ̃j∇µ□J̃l

+4
(
Rµν − 1

6g
µνR

)
∇µJ̃

j∇ν J̃
l
]
. (3.41)

This expression can be completed with the additional terms in J̃k to make it a type B anomaly
in the deformed theory at generic Jk, but they are not needed for our argument. The lowest term
above represents the metric in J̃k at J̄k, which is the normalization of the two-point function of
the moduli without insertions of the energy-momentum tensor, i.e. the Zamolodchikov metric.

Therefore one can immediately identify gij(J̄) with the Zamolodchikov metric. It contains
all the universal information about the infinite class of type B anomalies defined in the unde-
formed theory, i.e. the coefficients of the single logarithms in correlators of any number of
moduli operators. The covariance properties of the Zamolodchikov metric are simply inherited
from those of the anomaly metric. Even though the metric reflects the two-point function at the
deformed point it reflects the infinite summation of all higher order correlators. Different para-
metrizations of the deformed point contain the scheme dependence as semi-local contributions
could contribute and produce the transformation of the metric. The semilocal contributions do
not have an intrinsic (universal) meaning, unless some higher symmetry is introduced.

The above argument misses an important aspect of the Zamolodchikov metric as charac-
terizing also the global features of the moduli space. It assumes that the ‘path’ between the
‘perturbative expansion point J= 0’ and the finite point J̄ is unique. This is not generically true:
one can have ‘holonomies’ on the moduli space related to its global properties. The anomaly
approach being intrinsically perturbative misses the information about this structure and it is
a very interesting problem to try to find such a global information in the anomalies.

Finally the above identification gives us a simple argument for the matching of the gij(J)
anomaly normalizations. The Zamolodchikov metric gives the normalization of the two-point
function for the deformed theory at J̄k. As we argued in section 3 this normalization is matched
through the relation to the three-point function to the anomaly in the broken phase. The match-
ing occurs for a give scheme for J and it is covariant under a reparametrization.

Similar considerations can be made for the second anomaly (3.29) in the deformed theory.
Its normalization for the lowest term, the logarithmic term in the correlator of four moduli,
defines a Zamolodchikov-Osborn tensor which is given by tijlm(J̄j). Its covariance properties
under repametrizations of J̄k are again given by (3.32).

4. Energy-momentum tensor three-point function

We now turn to the case in which Weyl anomalies were originally discussed, the three-point
function of the energy-momentum tensor in d= 4,

Γ
(3)
µν,ρσ,αβ (k1,k2,k3)≡ ⟨Tµν (k1) Tρσ (k2) Talphaβ (k3)⟩ with k1 + k2 + k3 = 0. (4.1)
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It is the O(h3) term in the expansion of the effective action around Minkowski space. It
exhibits both type A and type B anomalies [14–17]. Here we will be mainly concerned with
the latter. Compared to the correlation functions which we discussed in the previous sections,
the one discussed here is far more involved due to the more complicated tensor structure.

The correlation function (4.1) has dimension four and, in addition to the symmetries implied
by the symmetry of Tµν , it has S3 Bose symmetry under permutation of the three pairs of
indices. As already discussed in detail in [14], there are 137 possible tensor structures, each
of which is multiplied by an invariant amplitude which is a function of the three independent
kinematical invariants k21,k

2
2,k

2
3. The tensor indices can be carried by the three momenta and the

Minkowski metric. As the total dimension Γ(3) is four, the amplitudes which multiply tensor
structures where all six indices are carried by momenta, have dimension−2, those where four
indices are carried by momenta have dimension 0, those where two indices are carried by
momenta have dimension +2 and, finally, those where all indices are carried by the metric,
have dimension +4. Their numbers are 27, 63, 42 and 5, respectively. Among those only the
27 dimension −2 amplitudes are scheme independent and therefore unambiguous and our
analysis is based on them.

In general space-time dimension the tensor structures are independent, however in integer
dimensions there are dimension-dependent special identities, so-called Schouten identities.
For d= 4, which we are interested in, there is one identity among the dimension zero tensor
structures which is the vanishing of the third metric variation of

´ √
gE4 (cf (4.13)). It vanishes

as the integrand is a total derivatives.
Our aim is to generalize the analysis of the∆= 2 model of section 2. More specifically, by

choosing appropriate linear combinations we look for diffeomorphism and Weyl Ward iden-
tities which involve only the 27 dimension −2 amplitudes. In a second step we use a dif-
feomorphism Ward identity to fix the normalization of the Type B anomaly in terms of the
normalization of the two-point function.

Due to Bose symmetry the invariant amplitudes come in S3 orbits, where S3 acts on the
arguments. There are orbits of length 6, 3, 2 and 1. In the first case the amplitudes have no
symmetry under exchange of any two arguments while in the last case they are totally sym-
metric. To make the S3 symmetry manifest we use a basis for the tensor structures where the
independent momenta are chosen as follows: the indices (µ,ν) are carried by k2,k3, indices
(ρ,σ) by k3,k1 and (α,β) by k1,k2. Of course the indices can also be carried by the metric. A
similar discussion can be found in [17], which we closely followed.

As for the final analysis of the Ward identities only the dimension−2 amplitudes, where all
six tensor indices are carried by momenta, enter, we will only enumerate those. We introduce
the following notation for their tensor structures, e.g.

(23;13;12) = k2µk
3
νk

1
ρk

3
σk

1
αk

2
β (4.2)

and for the invariant amplitudes

A{ijl}
I = AI

(
k2i ,k

2
j ,k

2
l

)
. (4.3)

Then the seven S3 orbits of the dimension −2 amplitudes are
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(1) A{123}
1 (22;11;11)+A{213}

1 (22;11;22)+A{132}
1 (33;11;11)

+A{231}
1 (22;33;22)+A{312}

1 (33;33;11)+A{321}
1 (33;33;22)

(2) A{123}
2 (33;11;12)+A{213}

2 (22;33;12)k+A{132}
2 (22;13;11)

+A{231}
2 (23;11;22)+A{312}

2 (33;13;22)+A{321}
2 (23;33;11)

(3) A{123}
3 (22;33;11)+A{213}

3 (33;11;22) A{ijk}
3 = A{jki}

3 = A{kij}
3

(4) A{123}
4 (22;11;12)+A{312}

4 (33;13;11)+A{321}
4 (23;33;22) A{ijk}

4 = A{jik}
4

(5) A{123}
5 (23;13;12) A{123}

5 = A{231}
5 = A{312}

5 = A{213}
5 = A{321}

5 = A{132}
5

(6) A{123}
6 (23;11;12)+A{213}

6 (22;13;12)+A{132}
6 (23;13;11)

+A{231}
6 (23;13;22)+A{312}

6 (33;13;12)+A{321}
6 (23;33;12)

(7) A{123}
7 (23;11;11)+A{231}

7 (22;13;22)+A{312}
7 (33;33;12) A{ijk}

7 = A{ikj}
7 . (4.4)

This defines the 27 dimension −2 invariant amplitudes, but there are only seven independent
functions of three arguments. In any particular CFT they are fixed.

The Ward identities are derived as follows. We expand the generating functional for con-
nected correlation functions as

W= log
ˆ
Dϕe−S[ϕ,g]

=
1
2!

ˆ
dxdy Γ̃(2)

µν,ρσ (x,y) h
µν (x) hρσ (y)

+
1
3!

ˆ
dxdydz Γ̃(3)

µν,ρσ,αβ (x,y,z) h
µν (x) hρσ (y) hαβ (z)+ . . .

(4.5)

where

hµν = gµν − ηµν . (4.6)

We note that Γ̃(n) differs from the n-point function of the energy-momentum tensor by a factor
(−1/2)n. This follows form the definition

⟨Tµν⟩=− 2
√
g

δ

δgµν
W. (4.7)

We are interested in the variation ofW under infinitesimal diffeomorphisms andWeyl trans-
formations of the metric

δξ gµν =∇µξν +∇νξµ (diffeo.)

δσgµν = 2σgµν (Weyl).
(4.8)

Expanded to first order in hµν these translate to

δξ h
µν =−∂µξν − ∂νξµ − hµρ∂ρξ

ν − hνρ∂ρξ
µ + ξρ∂ρh

µν (diffeo.)

δσh
µν =−2σ (ηµν + hµν) (Weyl).

(4.9)
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As before, we assume a regularization which preserves diffeomorphism invariance of
W. Evaluating δξW= 0 at O(h2) results in the diffeomorphism Ward identity, which in
momentum space reads

kµ1Γ
(3)
µν,ρσ,αβ (k1,k2,k3) = k1ρΓ

(2)
νσ,αβ (k3)+ k1σΓ

(2)
ρν,αβ (k3)+ k1αΓ

(2)
ρσ,νβ (k2)

+ k1βΓ
(2)
ρσ,α,ν (k2)− k2νΓ

(2)
ρσ,αβ (k3)− k3νΓ

(2)
ρσ,αβ (k2) .

(4.10)

Due to the anomaly,W is not invariant under Weyl transformations:

δσW=

ˆ
d4x

√
gσA(x) . (4.11)

In d= 4 there are two cohomologically non-trivial CP-even solutions to theWess-Zumino con-
sistency condition, parametrized by theory dependent constants a and c, and a cohomologically
trivial one, parametrized by b,

A= cC2 − aE4 + b□R (4.12)

where

E4 = RµνρσRµνρσ − 4RµνRµν +R2 (4.13)

is the Euler density and C2 = CµνρσCµνρσ the square of the Weyl tensor. Only the cohomo-
logically non-trivial solutions are true anomalies as they cannot be removed by addition of a
local counterterm to the generating functional.

The Weyl Ward identity in momentum space is

ηµνΓ
(3)
µν,ρσ,αβ (k1,k2,k3) = 2Γ(2)

ρσ,αβ (k2)+ 2Γ(2)
ρσ,αβ (k3)+Aρσ,αβ (k2,k3) (4.14)

where Aρσ,αβ is obtained from the expansion of (4.12) to O(h2).
For each of the Ward identities (4.10) and (4.14) there are two more, where the divergence

and trace are w.r.t. to the second and third energy-momentum tensor, respectively. They easily
follow from those given by Bose symmetry. All these Ward identities hold both in the broken
and in the unbroken phase, a priori with different anomaly coefficients.

The final ingredient which we need is the two-point function Γ(2)
µν,ρσ(k). It is not anomalous

and its tensor structure is fixed by conservation and tracelessness to be that of the O(h2) term
in the expansion of C2, as discussed in the Introduction:

Γ(2)
µν.ρσ (k) = Πµν,ρσ (k) f

(
k2
)
=

(
πµν πρσ −

3
2
(πµρπνσ +πµσ πνρ)

)
f
(
k2
)

(4.15)

where

πµν = k2 ηµν − kµ kν . (4.16)

In the unbroken phase,

f
(
k2
)
=

4
3
c̄ log

(
k2/Λ2

)
(4.17)

while in the broken phase f(k2) is more complicated and not known generally, except that for
k2 ≫ v2 it approaches (4.17).

The analysis of theWard identities now proceeds in several steps, which are analogous to the
ones which we followed in section 2. Due to the large number of tensor structures and invariant
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amplitudes and the fact that their range of dimension is from+4 to−2, it is considerably more
involved and we will skip most of the straightforward but tedious details8.

In the first step we insert the expansion of Γ(3)
µν,ρσ,αβ in invariant amplitudes into the (non-

anomalous) diffeomorphism Ward identities. Separating the resulting tensor structures9 leads
to a large number of homogeneous and inhomogeneous linear relations between the invariant
amplitudes. The coefficients are homogeneous polynomials in the three kinematical invariants
and the inhomogeneities, if present, are f(ki) multiplied by a non-negative power of k2i . By
taking linear combinations we obtain relations which involve only dimension −2 amplitudes
and f(k2i ). The simplest such relation which we find and which we will use later, is

(s1−s2−s3)A{213}
1 +(s3+s1−s2)A{123}

1 +(s2−s1)A{123}
4 = 4( f(s1)−f(s2)) (4.18)

plus two others which are related by Bose symmetry. Here, as before,

s1 = k21 , s2 = k22 , s3 = k23. (4.19)

This identity is satisfied in the unbroken and in the broken phase, where in the former f(k2)
is given by (4.17). Note that in these relations the UV cut-off Λ cancels, as required by the
fact the all amplitudes in these relations are of dimension −2 and therefore finite, i.e. cut-off
independent.

We now turn to the Weyl Ward identities. Inserting the expansion of Γ(3) in invariant amp-
litudes leads to new inhomogeneous linear relations between them, where the inhomogeneities
now contain f(k2i ) and the anomaly coefficients a and c and b. Again all coefficients are simple
homogeneous polynomials of the kinematical invariants.

As in the analysis of section 2, adding to them appropriate linear combinations of the dif-
feomorphismsWard identities, we obtain (anomalous) relations which involve only dimension
−2 amplitudes. The simplest such relation which, furthermore, does not contain f(k2i ) and only
the type B Weyl anomaly coefficient c, is of the general type of (1.4),

s1E1 + s2E2 + s3E3 =
8
3
c (4.20a)

with

E1 = A{213}
1 +A{132}

2 −A{231}
2 − 1

2
A{123}
4 +A{123}

6 −A{213}
6 −A{123}

7 +A{231}
7

E2 = A{123}
1 −A{132}

2 +A{231}
2 − 1

2
A{123}
4 −A{123}

6 +A{213}
6 +A{123}

7 −A{231}
7

E3 =−A{123}
1 −A{213}

1 +A{132}
2 +A{231}

2 − 1
2
A{123}
4 −A{123}

7 −A{231}
7

(4.20b)

and again two more related by Bose symmetry. We will show below that the anomaly c is fixed
by c̄, the normalization of the two-point function.

We also find anomalous Weyl Ward identities between the dimension−2 amplitudes which
involve only the type A anomaly coefficient a, e.g.

s1E1 + s2E2 + s3E3 =−16a (4.21a)

8 For which we used the xAct Mathematica package [18].
9 Here it is advantageous to convert to a basis which involves only two of the momenta, e.g. k1 and k2.
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with

E1 = 2A{123}1 + 4A{213}1 + 2A{132}1 + 10A{231}1 + 2A{312}1 + 2A{321}1 +A{123}2 − 9A{213}2

− 2A{132}2 − 2A{312}2 − 2A{321}2 + 2A{123}3 − 4A{213}3 − 3A{123}4 − 2A{312}4 + 3A{321}4

−A{123}5 +A{123}6 + 3A{213}6 + 2A{132}6 −A{312}6 +A{123}6 − 2A{123}7 + 2A{231}7 + 7A{312}7

E2 =−2A{213}1 + 6A{231}1 +A{123}2 − 9A{213}2 + 2A{231}2 + 4A{312}2 − 2A{213}3 +A{123}4 − 3A{321}4

−A{123}5 −A{123}6 +A{213}6 − 4A{231}6 +A{312}6 + 9A{231}6 + 4A{231}7 − 9A{312}7

E3 =−4A{213}1 − 10A{231}1 − 4A{321}1 −A{123}2 + 5A{213}2 + 4A{231}2 − 2A{312}2 − 4A{213}3 −A{123}4

+ 7A{321}4 −A{123}5 +A{123}6 +A{213}6 + 2A{231}6 +A{312}6 − 5A{231}6 − 2A{231}7 + 5A{312}7 .

(4.21b)

We now analyze the ward identities. We start with (4.18). At s2 = s1 it is satisfied identically
and contains no information. A non-trivial relation is obtained if we first take the derivative
w.r.t. s1 before setting s2 = s1 and then taking the limit s1 →∞ while keeping s3 fixed. In
doing so we recall that the amplitudes behave as A∼ 1

si
logp si for si →∞. Therefore, in this

limit, ∂siA is suppressed by one additional power. If we furthermore use ∂s1 f(s1) = 4 c̄/(3s1)
as s1 →∞, which is valid in both phases, we obtain from (4.18) the relation

2A{113}
1 −A{113}

4 =
16 c̄
3s1

. (4.22)

We now take the same limit in equation (4.20). This yields

2A{113}
1 −A{113}

4 =
8c
3s1

. (4.23)

Comparison gives

c= 2 c̄ ̸= 0. (4.24)

The normalization of the type A anomaly, (4.21) cannot be reduced to the two-point func-
tion. Any regularization respecting diffeomorphism invariance will produce the dimension−2
amplitudes corresponding to the three energy-momentum correlators which appear in (4.21)
and the value of a can be simply read off. In dimensional regularization a is determined by the
0/0 contribution of a dimension zero amplitude. This amplitudes vanishes in d= 4 due to the
Schouten identity [4].

Wewill not discuss the dilaton effective action for this case but refer instead to the literature,
e.g. [3].

5. Conclusions

Our main result is a uniform description of type A and B trace anomalies in d= 4. As we show
the information about the anomaly is carried by a ward identity of the general form

s1E1 (s1,s2,s3)+ s2E2 (s2,s3,s1)+ s3E3 (s3,s1,s2) = ct (5.1)

where si ≡ p2i are the kinematical invariants (pi are the three external momenta), Ei are dimen-
sion −2 amplitudes, selected depending of the anomaly type and ct is a constant which char-
acterizes the strength of the anomaly being respectively related to a or c. The basic Ward iden-
tity (5.1) can be translated into two equivalent, universal characterizations of the anomaly:
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Ei
si→∞−−−−→ ct

si
+O

(
sj,sk
s2i

[logsi]
p
)

(5.2)

and

− 1
π

ˆ
dsi ImiEi (si,sj,sk) = ct (5.3)

where the imaginary part is obtained from the discontinuity with respect to the si invariant
while the other two invariants sj,sk are kept fixed.

After the amplitudes entering the anomaly equation are identified any single one of the con-
ditions (5.2) and (5.3) implies all the others and also the validity of the basic equation (5.1) with
the same normalization. This depends crucially on the invariant amplitudes having dimension
−2 and obeying the standard analyticity of QFT. In particular the high invariant behavior for
one of the amplitudes can be related to the two-point function for type B and to the structure
of an invariant amplitude in the three-point function in dimensional regularization which van-
ishes in d= 4 for type A. Once the basic equation (5.1) is established trace anomaly matching
is immediate: in the deep Euclidean limit the invariant amplitudes of the unbroken and broken
phases match and since the anomaly is a constant this forces a and c to be the same in the
two phases. The basic consequence is then that the anomaly is invariant along the ‘flow’, i.e.
a,c are independent of the breaking scale v for the whole range v= 0, corresponding to the
UV unbroken phase, to v=∞, the deep IR of the broken phase. This is happening while the
individual invariant amplitudes have a nontrivial dynamical dependence on the breaking scale
v along the ‘flow’.

Interestingly the same type of equation (5.1) is obeyed by chiral anomalies in d= 4. This
type of equation generalizes the anomaly information related to ‘Dolgov–Zakharov’ poles [19–
21]. If sj,sk = 0 in (5.2), the sum rule is necessarily saturated by a ctδ(si) singularity signaling
a ‘pole’. Since, however, the configuration chosen is singular and the amplitudes Ei having
branch points at sj,sk = 0, the limit to the special configuration should be taken carefully along
special lines. Moreover the ‘poles’ are effectively representing a collapsed branch cut or a
collision of two logarithmic branch points in the limit. The relation between the dimension
−2 invariant amplitudes appearing in the different anomalies is puzzling. In particular the
chiral anomaly amplitudes have opposite P and T parities compared with the trace anomaly
ones and related to that they appear in a phase in the Euclidean configuration space. Moreover
when the conformal group is extended to the superconformal one [22] they appear in the same
supermultiplet. Understanding the similarities/differences of these structures as reflected in the
equation (5.1) obeyed by all of them is an interesting question.

The three-point correlator of energy momentum tensors can be used to constrain the pos-
sible values of the anomalies in unitary CFT as discussed in [23]. In certain kinematical config-
urations the correlator reduces to a diagonal matrix element of one energy momentum tensor
between two states obtained by acting on the vacuumwith the other two, respectively. It would
be interesting to understand if this interpretation carries over for the dimension−2 amplitudes
constraining again their structure.

Data availability statement

No new data were created or analysed in this study.

27



J. Phys. A: Math. Theor. 56 (2023) 465402 A Schwimmer and S Theisen

Acknowledgment

Wewould like to thankDaniele Dorigoni, Lorenzo Casarin and Zohar Komargodski for helpful
discussions. This work was supported in part by an Israel Science Foundation (ISF) center for
excellence grant (Grant Number 2289/18)

Appendix A. Explicit realizations: unbroken phase

The general discussion presented in sections 2 and 4 of the Ward identities and how the anom-
aly is captured by the properties of dimension−2 amplitudes, can be explicitly verifiedwith the
simplest CFT, namely a free massless scalar field. Here the correlators are one loop Feynman
diagrams. As the analytic structure of two- and three-point functions is completely fixed by
conformal symmetry, the results derived for this simple model are universal, the only free
parameter being the normalization, i.e. the actual strength of the anomaly. Furthermore, while
the three-point function of Tµν computed via a one-loop Feynman diagram is not identical

to Γ
(3)
µν,ρσ,αβ , the dimensional −2 amplitudes can be unambiguously obtained as they are not

contaminated by semilocal terms.
In this appendix we discuss the unbroken phase while in appendix B we discuss a simple

explicit calculable model of spontaneous breaking for which the results for the broken phase
can be checked.

For the conformally coupled scalar with action

S=
1
2

ˆ
ddx

√
g
(
∇µϕ∇µϕ+ ξRϕ2

)
ξ =

d− 2
4(d− 1)

(A.1)

the on-shell traceless and conserved energy-momentum tensor is

Tµν (ϕ) =
2
√
g

δS
δgµν

∣∣∣
gµν=ηµν

= ∂µϕ∂νϕ− 1
2
ηµν ∂

ρϕ∂ρϕ+ ξ (ηµν□− ∂µ∂ν)ϕ
2. (A.2)

We are interested in d= 4.
In the next section, when we discuss the spontaneously broken phase of this simple model,

we need to consider a massive free scalar. In the Lagrangian the mass term is − 1
2M

2ϕ2 which
contributes to the energy-momentum tensor as

∆Tµν =
1
2
ηµνM

2ϕ2 (A.3)

which leads to an explicit breaking of Weyl invariance, i.e. on-shell one how has Tµµ =M2ϕ2.
In this appendix we will use these general expressions for M= 0.

We start with the discussion of the correlator

⟨Tµν (−q)O (k1)O (k2)⟩ with O = ϕ2. (A.4)

The only contributing Feynman diagrams are logarithmically divergent triangle graphs. There
are two graphs with equal contributions to the amplitudes. From our discussion in section 2 it
follows that the divergent part only contributes to the amplitude A in the decomposition (2.7).
This can be easily isolated and the finite amplitudes can be recognized by their tensor struc-
tures. We assumed that the anomaly appears in Weyl invariance; therefore a convenient regu-
larization is dimensional regularization which respects diffeomorphism invariance. The finite,
dimension −2 amplitudes are unambiguous, not being affected by the contributions of semi-
local terms of the type discussed in section 3.2.
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There are different ways to obtain the finite amplitudes. It turns out that in order to explicitly
check the features of the invariant amplitudes that we have discussed in section 2, the most
convenient way is the Passarino–Veltman [24] decomposition, which amounts to expressing
all Feynman integrals with non-trivial tensor structure in terms of basic scalar integrals. This
is most easily demonstrated on a simple example. Consider the one-loop integral10,11

Bµ (p) =
ˆ

ddl

πd/2
lµ

(l2 −M2)
(
(l+ p)2 −M2

) = pµB1 (p) (A.5)

where we have used that the index µ can only be carried by the external momentum pµ. The
following simple manipulation

pµBµ (p) =
ˆ

ddl
πd/2

p · l(
l2 −M2

)(
(l+ p)2 −M2

) =
1
2

ˆ
ddl
πd/2

(
(l+ p)2 −M2

)
−
(
l2 −M2)− p2(

l2 −M2
)(

(l+ p)2 −M2
)

=−1
2
p2B0 (p) (A.6)

leads to

B1 (p) =−1
2
B0 (p) . (A.7)

We have used the freedom to shift the loop momentum and we have defined the basic scalar
two-point one-loop integral

B0 (p) =
ˆ

ddl

πd/2
1

(l2 −M2)
(
(l+ p)2 −M2

)
=− 2

d− 4
+Bf0 + const.+O (d− 4)

(A.8)

where

Bf0 (p) =−
ˆ 1

0
dx log

(
x(1− x)p2 −M2

)
µ2

(A.9)

and µ is the arbitrary renormalization scale. Similarly, one can decompose

Cµ(k1,k2) =
ˆ

ddl

πd/2
lµ

((l2 −M2)((l+ k1)2 −M2)((l− k2)2 −M2)
(A.10)

and

Cµν(k1,k2) =
ˆ

ddl

πd/2
lµ lν

((l2 −M2)((l+ k1)2 −M2)((l− k2)2 −M2)
(A.11)

and express them in terms of B0 and C0 where

C0 (k1,k2) =
ˆ

ddl

πd/2
1

(l2 −M2)
(
(k1 + l)2 −M2

)(
(k2 − l)2 −M2

) (A.12)

is the scalar triangle. The tensor indices are now carried by k1µ,k2ν and ηµν .

10 The measure for the loop integration has been chosen to avoid factors of 4π which can easily be inserted, if needed.
11 With the discussion of appendix B in mind, we treat the massive scalar field.
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The final result for the invariant amplitudes B,C,D in d= 4, which one obtains using the
PV decomposition of the three-point function ⟨Tµν ϕ2ϕ2⟩ is

λ4B= 2r2λ2 +
1
12

[
q2 r2 + 2(q·r)2

][
3q4 − 4 (q·r)2 − 2q2 r2 + 3r4

]
C0 + 4r2λ2M2C0

− 1
2

[(
2(q·r)3 +

(
q2 − r2

)(
2(q·r)2 + q2r2

)
+ q·r

(
q2r2 − 3r4

))
Bf0

(
k21
)
+(k1 ↔ k2)

]
−
(
q2 − r2

)[
2(q·r)2 + q2 r2

]
Bf0

(
q2
)

λ4C=−2q·rλ2 − 1
4
q2 q·r

[
3
(
q2 − r2

)2
− 4λ2

]
C0 − 3q2 q·r

(
q2 − r2

)
Bf0

(
q2
)
− 4q·rλ2M2C0

+
1
2

[(
(q·r)2

(
3q2 − r2

)
+ 3q·rq2

(
q2 − r2

)
− 2q2 r4

)
Bf0

(
k21
)
− (k1 ↔ k2)

]
λ4D= 2q2λ2 +

1
4
q4

[
3
(
q2 − r2

)2
− 4λ2

]
C0 + 3q4

(
q2 − r2

)
Bf0(q

2)+ 4q2λ2M2C0

+
1
2

[(
3q4(r2 − q·r− q2)− 2(q·r)3 + 5q·rq2 r2

)
Bf0(k

2
1)+ (k1 ↔ k2)

]
(A.13)

where

λ2 = q4 + k41 + k42 − 2q2 k21 − 2q2 k22 − 2k21 k
2
2 (A.14)

is the triangle function.
The expressions for the dimension −2 amplitudes above are independent of the renormal-

ization scale µ. They can be rewritten in terms of differences of logarithms. Given these expli-
cit expressions for the invariant amplitudes, it is now straightforward to check that the Ward
identities (2.14) are satisfied. In the normalization chosen here (2.14a) is satisfied with c= 2
and Γ(2)(k2) =−2 logk2/µ2, consistent with the general discussion of the ∆= 2 model in
section 2.

We remark that for the massive scalar the r.h.s. of (2.14b) evaluates to 4+ 8M2C0. The
additional term reflects the explicit violation of traceless of the energy-momentum tensor by
the mass term. We will come back to this in appendix B.

With the help of (A.13) we can also check the asymptotic behavior of the amplitudes Ei.
Both in the massless and massive cases one finds, as expected,

Ei −−−−→
si→∞

4
si
. (A.15)

Given the expressions for B,C,Dwe can also check the sum rules. Using the Cutkosky rule
one derives e.g. valid for k21,k

2
2 < 0,

Imq2E1 = Imq2 (−3B−D)

= π

−
3
(
q2 − r2

)(
q4 + 2 (q·r)2 + q2 r2

)
λ4

√
1− 4M2

q2

+

(
8
(
q2 + 3r2

)
λ2M2 +

1
2

(
q4 + 2 (q·r)2 + q2 r2

)
×
(
3q4 − 4 (q·r)2 − 2q2 r2 + 3r4

))
× 1
λ5

tanh−1


√
1− 4M2

q2

q2 − k21 − k22
λ

θ
(
q2 − 4M2

)
. (A.16)
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From this one computes

− 1
π

ˆ ∞

4M2

dq2 Imq2E1
(
q2,k21,k

2
2,M

2
)
= 4. (A.17)

For later use we have again presented the results for a massive scalar but, of course the result
being independent of M, it is also valid for the discontinuity evaluated at M= 0.

The computation of the correlation function of three energy-momentum tensors

⟨Tµν (k1) Tρσ (k2) Tαβ (k3)⟩ with k1 + k2 + k3 = 0 (A.18)

takes more effort. Rather than doing a Passarino–Veltman decomposition, we have derived
for the 27 dimension −2 amplitudes expressions involving integration of the two Feynman
parameters (we work again in dimensional regularization). They all have the form

ˆ 1

0
dx
ˆ 1−x

0
dy

P(x,y)

xyk23 + x(1− x− y)k21 + y(1− x− y)k22 −M2
(A.19)

where P(x,y) are polynomials in the Feynman parameters. For the unbroken phase which we
discuss here, M2 = 0.

The calculation is straightforward, however the detailed results are too long to present here.
But they were used to check all the Ward identities which we have written in section 4, in
particular that the combination of amplitudes in the Weyl Ward identities are constants, inde-
pendent of the kinematical invariants. Also the diffeomorphism Ward identity (4.18) has been
verified in this way. More precisely, the Ward identities are satisfied in this simple model for
(4π)2 c= 1

120 and (4π)2 a= 1
360 , which are known values for the free scalar; see e.g. [2].

Appendix B. Explicit realizations: broken phase

In this appendix we check the general setup for the anomaly structure in the broken phase
within a simplemodel proposed in [25]. Consider twomassless scalar fieldsϕ andφ interacting
through a marginal perturbation:

L=
1
2
∂µϕ∂

µϕ +
1
2
∂µφ∂µφ− gϕ2φ2. (B.1)

The fields are coupled conformally to a background metric. Both in the unbroken and broken
phases we will take a limit where g goes to 0 and therefore the beta function(s) vanish, thus
not disturbing conformality. Therefore the unbroken phase is made simply from two decoupled
massless scalar fields. Consider now the breaking: we give the field φ a vacuum expectation
value v, i.e.

⟨φ⟩= v. (B.2)

In order to calculate in the broken vacuum, we can alternatively shift in the Lagrangian the
field φ

φ = v+ φ̃ (B.3)

and calculate with the usual Feynman rules for the field φ̃ which has zero vev. The dimension-
less dilaton Σ, which transforms linearly under Weyl transformations, is

Σ= log

(
1+

φ̃

v

)
≃ φ̃

v
+O

(
φ2

)
(B.4)
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starting linearly in φ̃. Since the original energy-momentum tensor is

Tµν (ϕ,φ) = Tµν (ϕ)+ Tµν (φ)+
1
2
ηµν gϕ

2φ2 (B.5)

the shift produces a linear coupling of the dilaton in the energy-momentum tensor,

1
3
v2 (ηµν□− ∂µ∂ν)Σ (B.6)

which leads to

⟨0|Tµν |Σ(p)⟩= 1
3
v2 pµ pν . (B.7)

Covariantly the above coupling is translated into a v2ΣR term in the effective Lagrangian,
where R is the curvature scalar. Also a mass term for the ϕ field with M2 = 2gv2 and a cubic
coupling −2M2Σϕ2 are produced.

We will take the limit

g→ 0 , v→∞ , M2 = 2gv2 = fixed. (B.8)

The dimension 2 operator will be

O (x) = ϕ2 (x) . (B.9)

The broken phase is defined by the Feynman diagrams which survive this limit. All the
correlators of the ϕ2 operators and energy-momentum tensors coupled directly or through the
dilaton have a scale M. This is the consequence of the dilaton having the propagator propor-
tional to 1

v2 which cancels v
2 in the dilaton coupling to the scalar curvature.

We recapitulate the content of the broken phase:

(a) A massive scalar field ϕ with mass M with standard massive propagator and an energy-
momentum tensor containing the conformal improvement and the mass term.

(b) A massless dilaton field Σ with propagator normalized to 1
v2 .

(c) The dilaton is coupled to the massive field through a M2Σϕ2 coupling and to the energy-
momentum tensor by a v2pµpν coupling. All the diagrams involving correlators of the
massive energy-momentum tensor and operators made of the massive field have the scale
M and are well defined in the limit.

(d) The dilaton has a Weyl invariant kinetic term inherited from the φ field. Its energy-
momentum tensor is decoupled from the rest of the system and has the v independent
trace anomalies expected for a free massless field. The kinetic term contains dilaton self-
interactions with the scale v which goes to∞ in the limit considered, but being decoupled
we will ignore this sector.

We start with the discussion of the ∆= 2 model in this particular broken phase. The two-
point function is simply the mass term corrrelator for a massive field, i.e. it is logarithmically
divergent. After renormalization it is given by

Γ(2)
(
p2
)
= Γ(2)

(
µ2

)
+

1

(4π)2
(
p2 −µ2

)ˆ ∞

4M2

dx

√
1− 4M2

x

(x− p2)(x−µ2)
. (B.10)

Its exact form will not play a role in our calculation. As discussed in section 2, after using dif-
feomorphism invariance the logarithmically divergent contributions of the two and three-point
functions drop out and we are left with Ward identity (1.4) which involves only the dimension
−2 amplitudes of the ⟨TµνOO⟩ correlator in the broken phase. In the limit (B.8) there are two
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Figure 2. The two Feynman diagrams which contribute in the broken phase.

diagrams which survive (see figure 2) corresponding to the coupling of the energy-momentum
tensor through the dilaton and directly. Taking the trace of the energy-momentum tensor gives
the combination entering (1.4) whose right hand side is the anomaly, a constant independent
on the kinematical invariants and the scale M. We remark that the dilaton contribution to the
trace is, with opposite sign, equal to the contribution of the correlator of M2ϕ2 with two O
operators. Therefore an alternative interpretation of the anomaly equation in this very special
broken phase is that it represents an anomaly in the Ward identity satisfied by the trace of a
free massive scalar

Tµµ −M2O ≃ 0 (B.11)

which is valid for the free massive scalar with energy-momentum tensor

Tµν = ∂µϕ∂νϕ− 1
2
ηµν ∂

αϕ∂αϕ +
1
6
(ηµν□− ∂µ∂ν)ϕ

2 +
1
2
ηµνM

2ϕ2 (B.12)

evaluated in a correlator with two O operators.
For our very simple model the limit (B.8) selected the diagrams which participate in the

relevant Ward identities: the two diagrams of figure 2 and the two-point function (B.10). Then
using the regularizationwhich respects diffeomorphism invariance one arrives at (2.14b) which
defines the anomaly in the spontaneously broken phase in terms of the dimension −2 amp-
litudes contained in the two diagrams of figure 2. Without such a complete analysis even the
meaning of the anomaly in the spontaneously broken phase is not clear. In particular we intend
to analyze in the future if the interesting models with potential control of the broken phase
proposed in [6, 7] can be brought to this level of meaningful analysis. We continue now the
analysis of our simple model.

We can now check the Weyl Ward identity (2.14b) in the broken phase for this model. This
requires the knowledge of the dimension −2 amplitudes contributed by the two diagrams.

The first diagram, using the linear dilaton coupling (B.6), gives a contribution ∆B to the
amplitude B

∆B=−8
3
M2

q2
C0 (B.13)

with C0 as in (A.12). C0 and the amplitudes B,C,D corresponding to the second diagram are
now those for the massive case. The amplitudes C and D are not modified. We gave in (A.16)
the expression for the contribution to the discontinuity in q2 of the E1 amplitude from the
second diagram. The contribution to the sum rule from the first diagram, i.e. the contribution

from∆B, is zero. The reason is simply that, at high q2,∆B behaves as (logq2)2

(q2)2 with the power
1
q2 , whose coefficient is the sum rule contribution, missing. Therefore at finiteM the anomaly
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is controlled by the second diagram in figure 2 which, as shown in the previous appendix,
saturates the sum-rule. This verifies anomaly matching explicitly.

We discuss now the anomaly in the IR limit of the broken phase, i.e. when M goes to ∞.
Since one takes the limit ofM first we cannot consider anymore the high momentum behavior
of the amplitudes or the sum rules derived from them.We should use instead directly (2.32). As
the anomaly is independent ofM we expect the matching to work also atM=∞. The second
diagram vanishes in this limit (we remind that we are discussing all the time the dimension−2
amplitudes). We have to evaluate the first, i.e. the dilaton diagram. It has a finite limit giving

E1 =
4
q2

(B.14)

while E2 = E3 = 0. Therefore the anomaly equation (2.32) is satisfied with cB = c= 2. Since
the matching happened due to the specific value of the dilaton coupling to two O operators
we see explicitly the connection between the anomaly matching and the constraints on dilaton
couplings.

We comment on two additional features of this calculation:

(a) The same limit appears in the calculation of the anomaly of the massless scalar field when
Pauli–Villars regularization is used. Then the trace of the energy-momentum tensor in a
correlator with twoO operators is given by the explicit violation introduced by the Pauli–
Villars regulator. Therefore the limit with opposite sign represents the anomaly.

(b) As discussed above, in this simple model the anomaly in the broken phase for finite M
is related to the anomaly of a massive scalar. One can relate therefore the spontaneous
breaking in the conformal theory to a ‘massive flow’ specifically of the ϕ scalar which
starts massless in the UV and in the IR has an infinite mass. As we described above for
finite M one had the anomaly in the correlator of the energy-momentum tensor of the
massive scalar with two O operators. At M=∞ this correlator vanishes and therefore
the anomaly in the IR is zero. Hence, from the-point of view of the massive flow one has
different anomalies in the UV and IR. In the broken CFT description one has anomaly
matching and a physical dilaton degree of freedom in the IR. As a consequence the first,
i.e. the dilaton diagram, makes up the difference as calculated above. Therefore generally
for a massive flow it is natural to describe it in terms of a dilaton source (not a physical
state) which contains the structure of the nonvanishing difference between the UV and IR
anomalies on the massive flow [25–27]12.

One can use the samemodel to verify the general results presented in section 4 for the correlator
of three energy-momentum tensors in the broken phase. This is much more involved and we
discuss here only the analysis of theM→∞ limit. We start with the discussion of the general
set up. In the broken phase we should consider for the three-point function all the contributions
where the energy-momentum tensor couples directly to the massive loop or through up to three
dilatons. Since we are interested in the anomalous part of the effective action, in principle
we should isolate the contributions of the dimension −2 amplitudes entering the anomalous
equations, i.e. (4.20) and (4.21). In theM→∞ limit the contribution of the diagramwith direct
couplings of all three energy-momentum tensors vanishes for dimension −2 amplitudes.

12 For a bootstrap approach see [28].
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For the diagrams where the energy-momentum tensor couples through at least one dilaton
we use a short cut. Locality of the anomaly implies that in order that the diagram contrib-
utes to the anomalous Ward identity its expression should have exactly one dilaton propag-
ator. Therefore in theM→∞ limit, after factoring out the propagator, the rest of the diagram
should give a dimensionless coefficient multiplying four momenta. The interpretation of the
coefficient is that of the normalization of a two-dilaton—one-metric perturbation or three-
dilaton terms in the anomalous Wess–Zumino action. In order to generate these terms in the
limit one has to expand the respective triangle Feynman diagram in the momenta carried by
the additional dilatons. The momenta cancel the additional propagators and theM→∞ limit
is finite.

In addition the diagrams with no external momenta have also positive powers of M in
the expansion. These terms are non-anomalous since after taking the trace of the energy-
momentum tensor they have dilaton propagators and of course the anomaly cannot have such
an analytic structure. These effective non-anomalous tree diagrams which involve dilaton
propagators arise from the non-anomalous kinetic term of the dilaton. Therefore the contri-
butions with positive powers ofM in the limitM→∞ can be included as a ‘renormalization’
of the kinetic term.

To summarize, the anomalous contribution of the diagrams with couplings through the
dilaton is the finite contribution (through expansion in momenta) in the M→∞ limit. These
anomalous contributions for 2,3,4 dilatons were calculated in [25]. Here we complete the
calculation for the single dilaton which gives the linear coupling of the dilaton to the anom-
aly curvature polynomials. By our discussion above, this is captured by the left diagram in
figure 2 where the two operators O are replaced by energy-momentum tensors. This amounts
to computing the correlator

⟨M2ϕ2 (q) Tµν (k1) Tρσ (k2)⟩. (B.15)

More specifically we computed the unambiguous finite part of this dimension +2 correlator,
where all four tensor indices are carried by the two momenta k1 and k2. The invariant amp-
litudes have the general form (A.19), but in the limitM2 →∞we can replace the denominator
by −M2. In this case the integral over the two Feynman parameters becomes trivial. This
(finite) part of (B.15) should be compared with theO(h2) expansion of the anomaly (4.12). In
fact, we keep from it only the piece where all four tensor indices are carried by the momenta
of the two gravitons hµν . This leads to an over-determined system of linear equations which
is solved by (4π)2(a,c,b) = 1

360 (1,3,2) as expected [2].
In addition to the contribution to the anomaly we have discussed so far, there is also the

dilaton loop which contributes with equal coefficients as ϕ such that the total anomaly is that
of two free scalars. This dilaton contribution is generic and not special to this simple model.
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